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1.

Two well-known nonlinear approximating families in the context of Cheby-.
chev approximation are the unisolvent functions and the rational functions.
In 1961 John Rice [5] defined the notion ofunisolvence of variable degree. He
developed what is perhaps today the most general theory of nonlinear
Chebychev-type approximation on an interval, which includes both unisolvent
and rational approximations.

In this paper, a given function is approximated by unisolvent functions of
variable degree, simultaneously with respect to several weight functions.
A notion of vector-alteration is defined, which permits a characterization of
best approximations along the lines of the standard Chebychev theory, and
which generalizes the above results of Rice.

2.

Letf(x) be a continuous function to be approximated on [a,b]; let P be a
non-empty subset of Euclidean n-space En' let {F(A, x): A E P} be the class of
approximating functions, and let {w,(x)} be k continuous, positive (weight)
functions on [a,b], s = 1,2, ..., k. For anyfunctiong(x) define:

Ilg(· )11 = sup {I g(x)I:a < x < b}.

Define a vector-valued function:

G(A) = (1Iwl(')[f(') - F(A,·m, IIw2(') [f(' ) -F(A,·m,···,
!lWk(') [f(.) - F(A,' )]10.

A is said to be a better-than-or-equal approximation to B, if and only if,

IlwsC') [f(·) - F(A,' )]11 < IIw.(·) [f(·) - F(B,' )]ll

for each s, s = 1, 2, ... , k. We shall denote this by G(A) < .G(B). A point p of
a subset S of Ek will be called a minimal point of S, if and only if, there is no
q i: p, q E S, with the property q <po If A* E P, then A* (or F(A*,x» is said
to be a best approximation, if and only if, G(A*) is a minimal point of the set
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{G(A):A E P}. Observe that if A* is a best approximation tofwith respect of
anyone of the k weight functions, then A* is a best approximation because of
its uniqueness. The partial ordering ~. having been defined, the symbols .>,
<. , .> are understood as usual.

The Problem of Chebychev Approximation by Vector-Norms may be stated
as follows: Examine for existence, uniqueness and characterization the A in
P = En which are best approximations. The following concepts will be used to
restrict the class of approximating functions.

The real-valued function F(A, x) is defined for x in [a, b], and A in En. It will
be assumed to be continuous in x and A. F(A,x) is said to be solvent ofdegree
mat A* E En> if given a sequence {xj:a ~ Xl < X2 < ... < Xm ~ b} and E> 0,
there exists a S(A*,E,X3,X2""'Xm) > 0 such that !Yj - F(A*,xj)1 < S implies
that there is a solution, AEEm to F(A,xj)=YJ> j= 1, 2, ... , m, with
maxa<:;x<:;b IF(A,x) - F(A*,x)/ < E. A family of functions {F(A,x):A E En} is
said to satisfy the density condition, if and only if, given A E En and any E > 0,
there exist vectors Band C in En such that

F(A, . ) - E < F(B, . ) < F(A, .) < F(C, . ) < F(A, . ) + E.

F(A,x) is said to be unisolvent ofdegree m at A* E Em if
(i) F(A,x) is solvent of degree m at A*; (ii) F(A,x) is not solvent of degree

m + I at A*; (iii) for any A # A*, F(A*,x) - F(A,x) has at most m - 1 zeros
on [a,b].

Denote by V(A,x) the vector-valued function

(WI(x) [f(x) - F(A,x)], W2(X) [f(x) - F(A, x)], ... , Wk(X) [f(x) - F(A, x)]).

Given an A in Em a point Xo of [a, b] will be called a positive vector-extremum
of V(A,x), if for some s, I ~ s ~ k,

w.(xo) [f(xo) - F(A, xo)] = Ilws{f- F(A, .))11;

similarly, Xo is called a negative vector-extremum, if for some s, I ~ s ~ k,

W.(xo) [f(xo) - F(A, xo)] = -llws{f- F(A, . ))11.

The "error curve" V(A, x) is said to vector-alternate n times on [a,b], if there
are n + I points Xl < X2 < ... < Xn+l on [a,b] such that Xl' X2, ... , Xn+1 are,
alternatively, positive and negative vector-extrema of V(A,x).

Given K, a subset ofEm we denote byM (K) the minimal set of{G(A): A E K},
i.e., M(K) = {G(A):A is a best approximation in K}. For notational conveni
ence we write M in place of M(En).

3.

The existence of best approximations here is understood in the context of
the above partial order, ~'. The set of infima of the descending chains of
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{G(A):A E En} has, in general, the cardinality of the continuum. Therefore,
although there may exist best «.) approximations, e.g., each Bs for which

Ilwi' )(I( .) - F(B., . ))11 = inf Ilws(') (I( .) - F(A, . ))II, for some s,
AeP

it is a priori possible that there may also exist descending chains in
{(G(A):A E En)} whose infima are not attained. It is also possible that one
existing best approximation is unique while another is not (see Theorem 4).
In what follows some conditions for existence are given. It will be shown later
that each best approximation is unique.

THEOREM 1. Let {F(A, x): A E En} be a unisolventfamily offunctions ofdegree
non [a,b]. Then if fL is the infimum ofany chain in {G(A):A E En}, there exists
A* E En such that G(A*) = fL.

This theorem is a direct generalization of Theorem 5 of [6]. Its proof win
be omitted.

THEOREM 2. Let {F(A,x):A E En} be a unisolvent linear (in A) family of
functions ofdegree n on [a, b], and let k = 2. Then, the minimal set M is a Jordan
are, ifand only if, B l =1= B2• IfB j = B2 , M is a point.

Proof If B j = B2 , it is clear that M is a point. Assume then that B j # B2 and
note that G(B j ) =1= G(B2). We first prove the theorem for the linear approximat
ing class {F(A, x) :A E P}, where P is a compact, convex subset ofEn containing
B j and B2• The unisolvence will be invoked at the end ofthe proof.

Denote by L the straight line segment joining G(B j ) and G(B2). A homeo
morphism will be exhibited which maps L onto M(P). For each point p of L
let lp denote the straight line of slope 1 passing throughp. Denote by N(x) the
subset of E2 defined by {y:y<·x}. The subsets of N(x):{y:y<'x; second
coordinate of y = second coordinate of x} and {y: y < .x; first coordinate of
y = first coordinate of x} will be called, respectively, upper face and right face
ofN (x). Given a pointp ofL, let xo(p) be the point on lp ofsmallest coordinates
such that N(xo(p))n {G(A):A EP} =1=0. It will be shown that xo(P) EM(P).
The existence of xo(P) follows from the fact that {G(A): A E P} is compact and
connected. To show that xo(p) E M(P), assume that for some pEL, xo(p) rf:
M(P). Without loss of generality it will be assumed that p is neither G(B j ) nor
G(B2). Then there is a point Z of{G(A) :A E P} which belongs to either the upper
face or the right face of N(xo(p)), say the right face. Let Z = (Zj,Z2) and xo(p) =

(Xj,X2)' Since p =1= G(Bl ), for some E > 0 there exists a smallest nonnegative Y2
satisfying

N(x j - E, X2 +Y2) n {G(A):A E P} =1= O.

Let w = (Wi> W2) be some point ofthis set. From what has been said it follows
that Xl = Zh X2 > Z2, andthat wbelongs to the upper face of N(x, - E,X2 +Y2)'
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Now pick a positive ex so that ex < (X2 - Z2)/(X2 +Y2 - Z2), and let Az E G-I(z)
and A w E G-I(w). We have

G(exAz + (1 - ex) A w) <. exZ + (1 - ex) w

which implies that there is a point (UhU2) in N(xo(p))n {G(A):A EP} with
UI < Xl' in contradiction to the way xo(p) was defined. Therefore xo(p) E M(P).
Define h by h(p) = xo(p) for pEL. The continuity of h follows immediately,
so a homeomorphism h:L -+ M(P) has been exhibited.

Finally, let hj be homeomorphisms as defined above from L onto M(Sj),
where Sj are closed disks with the properties that S1 contains Bland B2,

Sj c Sl+l andU~l Sj = En. Now,foreachp EL, the points {hi(P)} are bounded
from "below" and are decreasing on lpo Let H(p) = 1imi....<Xl hlp). It is now clear
thatthe function H on the setL is a homeomorphism onto the set {H(p):pEL},
i.e., onto the set of infima of all chains in {G(A):A E En}. By Theorem 1,
{H(p):p EL} = M, which concludes the proof.

4.

In this section the characterization and uniqueness of each best approxima
tion is given. Note that, in general, there will be many "unique best approxi
mations".

THEOREM 3. Let {F(A,x):A E En} be a unisolvent family of functions on
[a,b] ofvariable degree. Let thisfamily satisfy the density condition, and denote,
for each A E En> by n(A) the degree ofunisolvence at A. Then F(A*,x) is a best
approximation to a given continuousfunctionf(x) on [a, b], ifandonly if, V(A*, x)
vector-alternates at least n(A*) times on [a,b].

Proof. Assume that F(A*,x) is a best approximation to f(x) and that
V(A*,x) vector-alternates r times, r < n(A*). The proofdepends on the density
condition of {F(A,x):A E En} which guarantees that r>- 1. It consists of
showing that there is aBE En satisfying G(B) < . G(A*). We distinguish several
cases depending on whether a and/or b are vector-extrema.

Assume that a is not a vector-extremum of V(A*,x). For simplicity of
notation we shall write n instead of n(A*). Divide the interval [a, b] into r + 1
subintervals by the points Xo < Xn- r < x n- r+ l < ... < Xn where Xo = a, Xn = b
and the rest of the points Xj are chosen so that (i) the approximation F(A*,x)
interpolates f(x) at xi> j = n - r, n - r + 1, ... , (n - 1); (ii) V(A*,x) vector
alternates once in any two adjacent subintervals, while it does not vector
alternate in anyone subinterval. Let

D i = /IWi(' )(f(.) - F(A*, ))1/, i= 1, 2, ..., k.
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By the continuity ofF, there is a 8 > 0 so that for some e> 0,

IwsCx)(f(x) - F(A*, x»1 < D. - e, s= 1, 2, ... , k,

whenever x E [a, a + 8]. Now pick n - r - 1 points in [a,a + 8], say Xl < Xz <
... < Xn- r -l, and define:

Mij = max (w;(x) (f(x) - F(A*, x»)
Xj~Xt;;;;.Xj+l

mij = min (w;(x) (f(x) - F(A*, x»)
Xj~X~Xj+l

d - D Mij-miJ
ij-;- 2 '

forj = n - r - 1, n - r, ..., n - 1; i = 1,2, ... , k. Choose some positive vector
extremum x' in [a,b]. By the solvency of degree n at A*, it follows that given
any E > 0, there is aBE En with the properties:

(i) F(B,x;) = F(A*,x;),

(ii) F(B,x') = F(A*,x') + 81,

(iii) !Iw;(' ) (F(B, .) - F(A*, .» II < E,

i = 1, 2, ..., (n - 1),

for some°1 ';;; E/2,
i= 1, 2, ... , k.

In particular, pick E to be the smallest among 012 and dij, j = n - r - 1,
n - r, ... , n - 1; i = 1, 2, ... , k. It then follows that (i), (ii) and (iii), together
with the unisolvence of F(A,x) imply that G(B) <. G(A*), a contradiction.

In case b is not a vector-extremum and in the case that a and b are both
vector-extrema, the proofs are similar to the above.

Conversely, assume that F(A*,x) vector-alternates at least n times and
that there is aBE Em B =f:. A, satisfying G(B) < . G(A*). Then it follows that
F(B, x) - F(A*,x) has at least n zeros on [a,b], contradicting the unisolvence
of degree n of F(A,x) at A*. This establishes the characterization of each best
approximation.

THEOREM 4. Each best approximation of theorem 3 is unique, i.e., given
p., EM, there is only one A* E En such that G(A*) = p.,.

Proof Given JL EM, assume that there are two vectors AI' Ai=f:.A t) with
the property that G(A 1) = G(Az) = JL and with respective degrees ofunisolvence
n(At) and n(Az). By Theorem 3, the functions V(At,x) and V(Az,x) have,
respectively, at least n(AI) + land n(Az) + 1 vector-extrema of alternating
sign in [a,b]. Let {x; :X; < Xi+t} be n(AI) + 1 such vector-extrema of V(Al,x).
The expression F(Az,Xi) - F(A t,x;) will be alternately nonnegative and non
positive as i ranges from 1 to n(AI) + 1. Now, as in the standard case of k = 1
([4J, p. 62), the unisolvence of degree n(At) of F(Abx) implies that AI = A z,
a contradiction.
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5. REMARKS

The necessity of the density condition for the type of proof of Theorem 3
given, has been explained in a recent paper by Dunham [1].

A simple example which illustrates Theorems 2, 3 and 4 is the following:
Letf(x) = x be approximated by constants {a}, let k = 2, WI == 1, and

(

0 - E
_ -,,-X+E, 0.,;;;; x.,;;;; 0,

W2- u

x, 0";;;; x.,;;;; 1.

For small °> °and E> 0, it is easy to verify that the best approximations
consist of each a staisfying t.,;;;; a.,;;;; -2 + 2v2, and that the error of each best
approximation exhibits vector-alternation. It is also seen that M here is the
straight line segment joining the points G(~) = (t,t) and G(-2 +2v2) =

(-2 + 2V2,3 - 2v2).
Finally, the results of this paper can be generalized if, instead of using the

standard weight functions w;(x), we use generalized weight functions Wi(x,y),
in the sense of Moursund [2]. It is a straightforward matter to verify that all
the above theorems remain valid if IIWi [" f(·) - F(A, .)]\1 is used instead of
Ilwi(' )(f(.) - F(A, .))11 for each i, i = 1,2, ... , k. An interesting example of the
use of a generalized weight function is given in [3].
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